Aircraft Design: A Conceptual Approach

Sixth Edition

Daniel P. Raymer

States All States

Loseph A. Schetz Edurin-Ond

Aircraft Design: A Conceptual Approach

Sixth Edition

Aircraft Design: A Conceptual Approach

Sixth Edition

Daniel P. Raymer Conceptual Research Corporation Playa del Rey, California

AIAA EDUCATION SERIES

Joseph A. Schetz, Editor-in-Chief

Virginia Polytechnic Institute and State University Blacksburg, Virginia

American Institute of Aeronautics and Astronautics, Inc.

The cover shows a far-term tailless transport design developed by Dr. Raymer under contract to NASA-GRC. The use of advanced controls technologies permits the elimination of traditional tails, resulting in major savings in weight and drag. This exotic concept was designed and analyzed in the RDS-Professional aircraft design software and exported as a 3-D geometry file. The CAD rendering was done from that file by Alfredo Ramirez P. of the University of San Buenaventura, Bogota, Colombia, using the Blender 3D content creation suite and the YafaRay ray tracing program. Mr. Ramirez also created the colorful paint and marking scheme.

American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia

1 2 3 4 5 6 7 8 9 10

Library of Congress Cataloging-in-Publication Data

Names: Raymer, Daniel P., author.

Title: Aircraft design: a conceptual approach/Daniel P. Raymer, Conceptual Research Corporation, Playa del Rey, California.

Description: Reston, VA: American Institute of Aeronautics and Astronautics, Inc., [2018] | Series: AIAA education series | Includes bibliographical references and index.

Identifiers: LCCN 2018033769 | ISBN 9781624104909 (hardcover)

Subjects: LCSH: Airplanes-Design and construction.

 $\label{eq:classification: LCC TL671.2.R29 2018 | DDC 629.134/1-dc23 LC record available at https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Flccn.loc.gov %2F2018033769&data=02%7C01%7Ckatb%40aiaa.org%7C6d136c5f53c34ae3c7 ad08d5fd5035f2%7C036e8604b674406a80987cb72daf432b%7C0%7C0%7C63669344 3349896747&sdata=EHvaCmS2wGY8ch%2BC%2BdO6brGtfNztrjgXtPwvZ9Y 5L7k%3D&reserved=0 \\ \end{tabular}$

Copyright © 2018 by Daniel P. Raymer. All rights reserved. Published by the American Institute of Aeronautics and Astronautics, with permission. Printed in the United States of America. No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. There are NO authorized electronic downloads so any website offering such is in violation of US and International copyright laws.

Data and information appearing in this book are for information purposes only. Neither AIAA nor the author are responsible for any injury or damage resulting from use of or reliance upon the information contained in this book, nor do they warrant that use or reliance upon it will be free from privately owned rights.

This book is dedicated to all who taught me, especially Lester Hendrix, Richard Hibma, Louis Hecq, Harry Scott, Richard Child, George Owl, Robert Maier, Ed McGachan, Doug Robinson, Steve White, Harvey Hoge, Michael Robinson, George Palmer, Henry Yang, Robert Swaim, C. T. Sun, David Schmidt, Bruce Reese, William Heiser, Tony Hays, Jess Sponable, and Gordon Raymer (test pilot, aeronautical engineer, and my father).

A special thanks, nearly 30 years after its initial publication, to the 60,000+ purchasers of this book and to the hundreds of readers who have sent letters of appreciation and suggestions for improvements. You too have taught me.

Thanks to Rockwell North American Aircraft Operations, Boeing, SAAB Aircraft, Composite Engineering, Mr. Alfredo Ramirez P., Mr. Lance Bradshaw, and Lockheed Martin for permission to use various illustrations. All other artwork is original, in the public domain, or copyrighted by AIAA.

Rockwell North American Aviation Advanced Design Department ~1980, Harry Scott at left, George Owl at far right. The author's drafting table was two rows in front of Harry's. (Photo courtesy of The Boeing Company.)

AIAA EDUCATION SERIES

Editor-in-Chief

Joseph A. Schetz Virginia Polytechnic Institute and State University

Editorial Board

João Luiz F. Azevedo Comando-Geral De Tecnologia Aeroespacial

Marty Bradley The Boeing Company

James R. DeBonis NASA Glenn Research Center

Kajal K. Gupta NASA Dryden Flight Research Center

Rakesh K. Kapania Virginia Polytechnic Institute and State University Brian Landrum University of Alabama, Huntsville

Michael Mohaghegh The Boeing Company

Conrad F. Newberry

Naval Postgraduate School; California State Polytechnic University, Pomona

Brett Newman Old Dominion University

Hanspeter Schaub University of Colorado

David M. Van Wie Johns Hopkins University

www.aircraftdesign.com

Author with Paris Airshow display model of his Advanced Supercruise Fighter Concept.⁽²⁰⁾ (Photo courtesy of Rockwell International North American Aircraft.)

FOREWORD

The American Institute of Aeronautics and Astronautics is delighted to present another new edition of our bestselling textbook, *Aircraft Design: A Conceptual Approach* by AIAA Fellow Dr. Daniel P. Raymer. This is the standard textbook and reference throughout the world on the subject of aircraft conceptual design, and proudly sits in just about every design office on the planet. Most aeronautical engineers who've graduated in the last 25 years have used *AD:ACA* at some point in their education, and for most the book was a "keeper" even when the class was finished.

In this sixth edition Dr. Raymer has expanded and updated his presentation of fast-moving technologies, added lots of new material, and rewritten introductory material to make it even more "user-friendly." Given the evergrowing importance of electric propulsion, Raymer has added a whole new chapter entitled *Electric Aircraft*. This presents technologies, design-to guidance, and rules of thumb, and offers electric aircraft performance and sizing equations derived in a format familiar to those designing conventionally powered airplanes.

This encyclopedic book covers every topic necessary to the understanding of aircraft design. Preliminary sizing, aerodynamics, structures, stability and control, propulsion, configuration layout, performance, cost analysis, and much more are all presented starting from first principles and building to a set of tools allowing the reader to actually do a realistic job of aircraft conceptual design. All topics are presented from the point of view of the aircraft designer, not the specialist in any given topic area.

After 19 chapters detailing the way to design "normal" aircraft, Raymer concludes with four more chapters describing the design of more exotic flight vehicles including electric aircraft, helicopters, vertical takeoff jets, hypersonic aircraft, launch vehicles, airships, flying wings, forward-swept wings, asymmetric airplanes, and much more. Enjoy!

Daniel Raymer is uniquely qualified to write this book because of his broad expertise in the field. He actually is an aircraft conceptual designer, doing blank-sheet-of-paper designs for over 40 years for large and small aircraft companies. He also teaches aircraft design both in a university setting and in his famous design short courses, and is widely published with topics ranging from actual design studies, to design and CAD methodologies, to

x Aircraft Design: A Conceptual Approach

esoteric optimization methods as applied to aircraft design. His command of the material is excellent, and he is able to organize and present it in a very clear manner. 60,000+ purchasers seem to agree!

The AIAA Education Series is a premier provider of textbooks in the field of aerospace engineering. The Education Series covers a broad range of related topics and includes textbooks of basic theory, application, and design. Not just a "print house," the AIAA staff and working-engineer volunteers actively solicit submissions from world-renowned experts, then work with them to produce books which are suitable for both university usage and as archival sources of information for working engineers. A complete list of titles can be found at *www.aiaa.org.* Suggestions for new topics and new authors are always welcome.

Joseph A. Schetz Editor-in-Chief AIAA Education Series

CONTENTS

Pre	face	xvii
Aut	hor's Note Concerning Use of Metric Weight Units	xix
Nor	nenclature	ххі
Sup	porting Materials	xxix
Cha	pter 1 Design—A Separate Discipline	1
1.1	What Is Design?	1
1.2	Design: How Does It Start?	2
1.3	An Airplane Designer: How Can I Become One?	4
1.4	The Book: What Is Here and How It Is Organized	6
Cha	pter 2 Overview of the Design Process	9
2.1	Requirements	9
2.2	Phases of Aircraft Design	12
2.3	Aircraft Conceptual Design Process	18
2.4	Integrated Product Development and Aircraft Design	23
Cha	pter 3 Sizing from a Conceptual Sketch	27
3.1	Introduction	27
3.2	Takeoff-Weight Buildup	28
3.3	Empty-Weight Estimation	29
3.4	Fuel-Fraction Estimation	31
3.5	Takeoff-Weight Calculation	42
3.6	Design Example: ASW Aircraft	42
Cha	apter 4 Airfoil and Wing/Tail Geometry Selection	53
4.1	Introduction	53
4.2	Airfoil Selection	54
4.3	Wing Geometry	72

xii Aircraft Design: A Conceptual Approach

4.4	Biplane Wings 95 Tail Geometry and Arrangement 97		
4.5	Tan Geometry and Arrangement)/	
Cha	pter 5 Thrust-to-Weight Ratio and Win	g Loading 115	
5 .1	Introduction	115	
5.2	Thrust-to-Weight Ratio	116	
5.3	Wing Loading	123	
5.4	Selection of Thrust to Weight and Wing Load	ling 142	
Cha	pter 6 Initial Sizing	145	
6.1	Introduction	145	
6.2	"Rubber" vs "Fixed-Size" Engines	146	
6.3	Rubber-Engine Sizing	147	
6.4	Fixed-Engine Sizing	154	
0.5	Geometry Sizing	156	
0.0	Control-surface sizing	101	
Cha	pter 7 Configuration Layout and Loft	165	
7.1	Introduction	165	
7.2	End Products of Configuration Layout	167	
7.3	Conic Lofting	175	
7.4	Conic Fuselage Development	179	
7.5	Flat-Wrap Fuselage Lofting	185	
7.0	Loft Varification via Buttack Plana Cuta	188	
7.8	Wing/Tail Layout and Loft	109	
7.9	Wetted-Area Determination	204	
7.10	Volume Determination	206	
7.11	Use of Computer-Aided Design (CAD)		
	in Conceptual Design	207	
Chap	pter 8 Special Considerations in Confi	guration Layout 213	
8 .1	Introduction	213	
8.2	Aerodynamic Considerations	214	
8.3	Structural Considerations	223	
8.4	Radar Detectability	233	
8.5	Infrared Detectability	243	
8.6	Visual Detectability	244	
0./ 0.0	Aurai Signature Vulnorphility Considerations	245	
8.0 8.0	Crashworthiness Considerations	247	
8.10	Producibility Considerations	249	
8.11	Maintainability Considerations	257	

Cha	pter 9 Crew Station, Passengers, and Payload	261		
9.1	Introduction	261		
9.2	Crew Station			
9.3	3 Passenger Compartment			
9.4	Cargo Provisions	267		
9.5	Weapons Carriage	269		
9.6	Gun Installation	273		
Cha	pter 10 Propulsion and Fuel System Integration	275		
10.1	Introduction	275		
10.2	Propulsion Overview and Selection	276		
10.3	Jet-Engine Integration	281		
10.4	Propeller-Engine Integration	311		
10.5	Fuel System	323		
10.6	Green Propulsion	329		
Cha	pter 11 Landing Gear and Subsystems	337		
11.1	Introduction	337		
11.2	Landing-Gear Arrangements	338		
11.3	Tire Sizing	343		
11.4	Shock Absorbers	351		
11.5	Castoring-Wheel Geometry	359		
11.6	Gear Retraction Geometry	360		
11.7	Seaplanes	364		
11.8	Subsystems	366		
Inter	mission Step-by-Step Development of a New Design	379		
Cha	oter 12 Aerodynamics	389		
1 2 .1	Introduction	389		
12.2	Aerodynamic Forces	390		
12.3	Aerodynamic Coefficients	396		
12.4	Lift	397		
12.5	Parasite (Zero-Lift) Drag	416		
12.6	Drag Due to Lift (Including Induced Drag)	442		
12.7	Computational Fluid Dynamics	452		
Chap	oter 13 Propulsion	463		
1 3 .1	Aircraft Thrust—The Big Picture	463		
1 3.2	Jet-Engine Thrust Considerations	466		
13.3	Jet-Engine Installed Thrust	469		
13.4	Part Power Operation	479		
13.5	Piston-Engine Overview	480		

13.6	Propeller Analysis	481
13.7	Piston-Prop Thrust Corrections	486
1 3.8	Turboprop Performance	488

Chapter 14 Structures and Loads

491

559

14.1	Introduction	491
14.2	Loads Categories	492
14.3	Air Loads	494
14.4	Inertial Loads	505
14.5	Powerplant Loads	506
14.6	Landing-Gear Loads	506
14.7	Structures Fundamentals	507
1 4.8	Material Selection	513
14.9	Material Properties	517
14.10	Structural-Analysis Fundamentals	527
14.11	Finite Element Structural Analysis	551

Chapter 15 Weights

15.1	Introduction	559
5.2	Approximate Weight Methods	567
5.3	Aircraft Statistical Weights Method	569
5.4	Additional Considerations in Weights Estimation	579

Chapter 16 Stability, Control, and Handling Qualities 585

16.1	Introduction	585
16.2	Coordinate Systems and Definitions	587
16. 3	Longitudinal Static Stability and Control	589
16.4	Lateral-Directional Static Stability and Control	611
16.5	Stick-Free Stability	620
16.6	Effects of Flexibility	620
16.7	Dynamic Stability	622
16.8	Quasi Steady State	627
16.9	Inertia Coupling	629
16.10	Handling Qualities	630

Cnapt	er 17 Performance and Flight Mechanics	637
17.1	Introduction and Equations of Motion	637
17. 2	Steady Level Flight	639
17. 3	Steady Climbing and Descending Flight	649
17.4	Level Turning Flight	653
17.5	Gliding Flight	657
17.6	Energy-Maneuverability Methods	661
17.7	Operating Envelope	669

17.8	3 Takeoff Analysis	671
17.9	Landing Analysis	676
17.10	Other Fighter Performance Measures of Merit	679
Chap	oter 18 Cost Analysis	687
1 8 .1	Introduction	687
18.2	Elements of Life-Cycle Cost	689
18.3	Cost-Estimating Methods	691
18.4	RDT&E and Production Costs	692
18.5	Operations and Maintenance Costs	699
18.6	Cost Measures of Merit (Military)	703
18.7	Aircraft and Airline Economics	704
Chap	oter 19 Sizing and Trade Studies	709
1 9 .1	Introduction	709
1 9.2	Detailed Sizing Methods	710
1 9.3	Improved Conceptual Sizing Methods	711
19.4	Classic Optimization—Sizing Matrix and Carpet Plots	717
19.5	Trade Studies	724
Chap	ter 20 Electric Aircraft	735
20.1	Introduction	735
20.2	Review of Physics & Units	738
20.3	Why Spark?	739
20.4	Electric Motor Basics	742
20.5	Power Supply: Batteries	745
20.6	Power Supply: Fuel Cells	749
20.7	Power Supply: Hybrid-Electric	750
20.8	Power Supply: Solar Cells	753
20.9	Power Supply: Beamed Power	754
20.10	Electric Aircraft Run-Time, Range, Loiter, and Climb	755
20.11	Electric Aircraft Initial Sizing	757
Chap	ter 21 Vertical Flight—Jet and Prop	763
21.1	Introduction	763
21.2	Jet VTOL	764
21.3	Prop VTOL and Helicopter	783
Chap	ter 22 Extremes of Flight	805
22.1	Introduction	805
22.2	Rockets, Launch Vehicles, and Spacecraft	806
22.3	Hypersonic Vehicles	819
22.4	Lighter Than Air	823

xvi Airci	aft Design:	A Conce	ptual Ap	oproach
-----------	-------------	---------	----------	---------

Chapter 23 Design of Unique Aircraft Concepts	833
23.1 Introduction	833
23.2 Flying Wing, Lifting Fuselage, and Blended Wing Body	834
23.3 Delta and Double-Delta Wing	839
23.4 Forward-Swept Wing	841
23.5 Canard-Pusher	843 845
23.0 Multi-ruselage	847
23.8 Joined Wing	851
23.9 Some More Innovative Wings	852
23.10 Wing-in-Ground-Effect	859
23.11 Unmanned/Uninhabited Aircraft	860
23.12 Derivative Aircraft Design	863
Chapter 24 Conceptual Design Examples	867
24.1 Introduction	867
24.2 Single-Seat Aerobatic Homebuilt	868
24.3 Lightweight Supercruise Fighter	905
Appendix A Unit Conversion	959
Appendix B Standard Atmosphere	963
Appendix C <i>Airspeed</i>	969
Appendix D Airfoil Data	971
Appendix E Typical Engine Performance Curves	987
F1 Afterburning Turbofan	987
E.2 High-Bypass Turbofan	991
E.3 Turboprop	993
Appendix F Design Requirements and Specifications	995
Questions	999
References	1009
Index	1017

PREFACE

Aircraft Design is a challenging, rewarding, and fun career. There are dozens of different activities involved in creating a new air vehicle concept, different specialties ranging from initial configuration layout to system optimization and cost estimation. These activities can be grouped into two equally important aspects of aircraft design: *design layout* and *design analysis*. While some people do both, in most cases these differing aspects attract different types of people. Certain people love playing with numbers and computers, whereas others can't stop doodling on every piece of paper within reach.

This book offers a balanced overview of these two aspects of design, integrated together and presented in the manner typically seen in an aircraft design project at a major aerospace company. Whichever aspect you may lean towards, the book should help get you started and will provide a resource of material throughout your career.

Aircraft design depends on the reliable calculation of numbers but in the end, the only thing that actually gets built is the configuration concept shown on the drawing or CAD file. Its creation is not a trivial task of drafting based upon the analysis results, but rather it is a key element of the overall design process and ultimately determines the performance, weight, and cost of the aircraft. Bluntly stated, if you don't have a good drawing, you don't have an aircraft design. The "Conceptual Approach" mentioned in the book's title refers to a design process centered around a realistic concept layout.

It is difficult to visualize and draw a new aircraft that has a streamlined aerodynamic shape and an efficient internal layout and yet satisfies an incredible number of real-world constraints and design specifications. Aircraft conceptual design layout is a rare talent that takes years to cultivate. Although to some extent good designers are "born, not made," the proven methods and best practices of aircraft configuration layout can be taught and are covered here in the first half of this book. These apply equally to traditional drafting table drawings and to modern computer-aided design.

It is also true that a nice aircraft drawing is nothing without the analytical results to support it, and it will be a much better design if clever optimization methods are employed. So, a good designer or design team must find an appropriate balance between design layout and design analysis. The second half of this book covers analysis and optimization methods that will tell

you if the design works, if it meets its design requirements, and how you can make it better in the next drawing.

Writing—and rewriting—this book has been an educating and humbling experience. It is my sincere wish that it helps aspiring aircraft designers to "learn the ropes" more quickly. My greatest pride in the previous editions has been the thanks from the students who've used the book in their design classes, and the designers of built-and-flown airplanes who've told me that they made extensive use of my book. Thanks—that means a lot.

> Daniel P. Raymer Los Angeles, California June 2018

The author's Aircraft Conceptual Design Web site at www.aircraftdesign.com includes examination questions for the book, advice to students and wouldbe inventors, sample aircraft design layouts, free design software, tips for the use of the companion RDS-Student design software, and information on aircraft design short courses. It is free, and all are welcome!

Raymer's Reverse Installation Vectored Engine Thrust ("RIVET") supersonic VSTOL concept.⁽¹³⁰⁾

AUTHOR'S NOTE CONCERNING USE OF METRIC WEIGHT UNITS

Metric units (SI or mks) are more universal and technically consistent than British Imperial units (fps) and also reduce the possibility of stupid errors in aircraft calculations. However, one must still decide exactly which metric unit multipliers to use. Should masses be defined in grams or in kilograms? Should time be in seconds or in hours, or used as needed to make the numbers "nice"? These decisions change the numbers, and, unfortunately, different organizations use slightly different combinations of unit multipliers and times. To maximize consistency with prior literature, the metric unit terms used in *Jane's All the World's Aircraft*^[6] and in Stinton's *The Design of the Aeroplane*^[47] were employed in this book. Values in this book are presented first in British units, and then in metric units enclosed in braces {}.

A key issue and the source of much confusion is the treatment of "weight" in metric units. Weight by definition is a force, not a mass. However, pilots and working engineers describing the weight of the Airbus A340 would say 126,000 kg, not 1,235,682 kN. What those pilots and engineers really mean is, "the Airbus exerts a weight force equivalent to that exerted by a 126,000 kg mass in a 1-g gravitational field." This book follows this common practice—don't let it confuse you! When doing an analysis such as calculating lift force and equating it to weight, the "weight" of 126,000 kg (actually mass) must first be converted to proper force units (Newtons) by multiplying by the 1-g acceleration constant ($g = 9.807 \text{ m/s}^2$).

This verbal equating of weight with force in a 1-*g* gravitational field is carried over to the definitions of ratios such as wing loading (kg/m^2) and power loading (kg/kW). Because of this, the values of these ratios as given in the tables are not technically correct when applied to the various equations that use them. The mass terms must be converted to force by multiplying by *g*. Thus, a wing loading given in "pilot talk" as 586 kg/m² must be converted to 5,746.9 N/m² to apply in equations relating lift to weight (for example, see Table 5.5).

The values given for thrust-to-weight ratio (T/W) do not require conversion. In traditional (fps) practice the thrust is given in lbs-force, and the weight is given in lbs-mass (exerted force assuming a 1-g field), so that the

xx Aircraft Design: A Conceptual Approach

ratio is nondimensional and the same as the desired SI units of Newtons/Newton. A T/W greater than one means the aircraft can accelerate straight up, regardless of the units in which it was designed!

X-15 rollout (U.S. Air Force photo).

Learjet (USAF C21-A) (U.S. Air Force photo).

NOMENCLATURE

Coefficients, parameters, and Greek letters commonly used in aircraft design are listed below, followed by various abbreviations and acronyms. For updates and more definitions, see www.aircraftdesign.com/abrv.html. The terms specific to the statistical weights equations presented in Chapter 15 are listed in that chapter and are not repeated here.

Aircraft Design Coefficients and Parameters

Α	aspect ratio of wing $(=b^2/S_{ref})$
Α	helicopter rotor disk area
A_c	capture area of jet engine inlet duct
$A_{\rm wetted}$	wetted aspect ratio $(=b^2/S_{\text{total wetted area}})$
A^*	cross-section area if that flow stream was at Mach 1
b	wing span
BMF	Battery Mass Fraction
С	chord length
С	specific fuel consumption (also SFC)
С	exhaust velocity (rockets)
$C_{\rm bleed}$	bleed coefficient (adjusts thrust for amount of bleed air)
C_D	wing or whole airplane drag coefficient
$C_{\rm Di}$	induced-drag coefficient
$C_{\rm Dmin}$	minimum drag coefficient (= C_{D0} if uncambered)
C_{Dwave}	supersonic wave-drag coefficient (also C_{Dw})
C_{D0}	drag coefficient at zero lift
C_d	airfoil drag coefficient
C_f	flat-plate skin-friction coefficient
$C_{\rm fe}$	equivalent skin-friction coefficient
$C_{\rm HT}$	horizontal tail volume coefficient
C_L	wing or whole airplane lift coefficient
C_l	airfoil lift coefficient
C_l	rolling-moment coefficient
$C_{L\alpha}$	wing or whole airplane slope of the lift curve
$C_{l\alpha}$	airfoil slope of the lift curve (= 2π theoretically)

xxii Aircraft Design: A Conceptual Approach

$C_{l\beta}$	rolling moment with sideslip angle (dihedral effect)
C_m	airfoil pitching-moment coefficient
C_m	wing or whole airplane pitching-moment coefficient
$C_{m\alpha}$	pitching-moment derivative with angle of attack
C_n	yawing-moment coefficient
$C_{n\beta}$	yawing-moment derivative with sideslip angle
$C_{\rm ram}$	ram coefficient (adjusts thrust for inlet pressure recovery)
$C_{\rm VT}$	vertical tail volume coefficient
Ε	Young's modulus, or modulus of elasticity
EHA	Electrohydrostatic Actuator
E_{sb}	battery specific energy {wh/kg}
$E_{\rm wd}$	wave-drag efficiency factor $[=C_{Dwave}/C_{Dwave(Sears-Haack)}]$
е	Oswald's span efficiency factor (adjusts aspect ratio)
FAA	Federal Aviation Administration
FAI	Fédération Aéronautique International (aviation record
	certifying agency)
FF	form factor term (pressure drag) for parasitic drag
	calculation
f_s	fuel specific energy (P_s /fuel flow)
g	acceleration due to gravity, standard values: 32.174 ft/s^2 or
	9.80665 m/s ²
G	shear modulus, or modulus of rigidity
h_e	energy height (actual height plus height equivalent of kinetic
	energy)
<i>I</i> sp	specific impulse (rocket propellant consumption)
I_{xx}	rolling mass moment of inertia
$I_{\gamma\gamma}$	pitching mass moment of inertia
I_{zz}	yawing mass moment of inertia
i	incidence angle
J	propeller advance ratio $(=V/nD)$
Κ	drag due to lift factor
L/D	lift-to-drag ratio
LE	leading edge (of airfoil or wing)
М	Mach number (multiple of speed of sound)
т	total aircraft mass {kg}
MAC	mean aerodynamic chord
m_b	mass of batteries {kg}
$M_{\rm cr}$	critical Mach number (where shocks first form)
$M_{\rm DD}$	drag-divergent Mach number (where drag increases)
п	load factor
P_s	specific excess power
$P_{\rm used}$	average motor power used {kW}
Q	interference factor for parasitic drag calculation
Q	production quantity

q	dynamic pressure (of air)
q	dynamic pressure, $=\frac{1}{2}\rho V^2$
R#	Reynolds number (also R or R no.)
RAND	RAND CorpResearch ANd Development (think-tank for USAF)
R _{cutoff}	Cutoff Reynolds number, adjusts skin friction for roughness
S	leading-edge suction (force or percent attainment)
Sexposed	exposed wing planform (wing less portion of wing covered by fuselage)
SFC	specific fuel consumption (also C)
T/W	thrust-to-weight ratio
t	airfoil thickness
t/c	airfoil thickness-to-chord length ratio
TE	trailing edge (of airfoil or wing)
$U_{\rm de}$	derived equivalent gust velocities (used for gust load calculation)
Ve	equivalent airspeed (dynamic pressure based, $Ve = V_{actual}$ sqrt[ρ/ρ_0])
V _{NE}	never-exceed speed
Vp	maneuver (pullup) speed (max. speed for full controls deflections)
V_1	takeoff decision speed
V_2	takeoff safety speed
W _{dg}	flight design gross weight
W_e^{-s}	empty weight
W_f	fuel weight
Ŵ	takeoff gross weight
W/S	wing loading

Aerospace Applications of Greek Letters

angle of attack
sideslip angle
Prandtl-Glauert compressibility correction
change in some parameter
deflection of controls
wing sweep (see also Λ)
unit strain
shearing strain
flight-path angle
wing dihedral angle
efficiency
total system efficiency from battery to motor output shaft
propeller efficiency

xxiv Aircraft Design: A Conceptual Approach

η_p (eta-p)	propulsive efficiency (rockets)
λ (lambda)	wing taper ratio $(C_{\rm tip}/C_{\rm root})$
Λ (Lambda)	wing sweep (see also Δ)
μ (mu)	viscosity
μ (mu)	micro (one millionth = $1/10^6$)
π (pi)	3.141592653589793
П (Рі)	product operator
ho (rho)	air density
ho (rho)	conic shape parameter
ho (rho)	radius of gyration
σ (sigma)	unit stress
σ (sigma)	air density ratio (= ρ/ρ_0)
Σ (Sigma)	summation operator
au (tau)	unit shear stress

Abbreviations and Acronyms

AAW	active aeroelastic wing
ABC	activity-based costing
A/C	aircraft
AC	Alternating Current
AF	Air Force
AFRL	Air Force Research Lab
AMAD	airframe mounted accessory drive
AMPR	airframe manufacturers planning report
AMRAAM	advanced medium-range air-to-air missile (now AIM-120)
AOA	angle of attack
APU	auxiliary power unit
ASW	antisubmarine warfare
ATC	air traffic control
ATF	Advanced Tactical Fighter (F-22 predecessor program)
AWACS	airborne warning and control system
BFL	balanced field length
BINGO	fuel state at which a pilot must begin to return to base
BL	boundary layer
BMI	bismaleimide (high-temp composite material)
BPR	turbofan engine bypass ratio
CAD	computer-aided design
CAIV	cost as an independent variable
CAM	computer-aided manufacturing
CAS	calibrated airspeed
CCC	command, control, and communications ("C-cubed")
CER	cost-estimating relationship
CFD	computational fluid dynamics

c.g.	center of gravity
COTS	commercial off-the-shelf (no development required)
CS	EASA Certification Specifications (like FARs)
CTOL	conventional takeoff and landing
CV	aircraft carrier, heavier-than-air aircraft
CVN	aircraft carrier, heavier-than-air, nuclear powered
DAPCA	development and procurement cost of aircraft (cost model)
DARPA	Defense Advanced Research Projects Agency
DATCOM	Data Compendium (USAF aerodynamics methodology
	report)
DC	Direct Current
DCPR	defense contractors planning report
Decalage	incidence angle between two wings of a biplane
DOC	direct operating costs
DoD	Department of Defense
DOF	degree of freedom (6-DOF = X, Y, Z, roll, pitch, yaw)
Drag Counts	four digits to right of decimal place in coefficient
EAS	equivalent air speed
ECCM	electronic counter-countermeasures
ECM	electronic countermeasures
ECS	environmental control system
EHP	equivalent horsepower
EASA	European Aviation Safety Agency (like FAA)
ESHP	equivalent shaft horsepower (includes residual thrust)
EW	electronic warfare
F/A	fighter/attack
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulations (certification specs)
FAR	Federal Acquisition Regulations
FB	fighter-bomber
FBW	fly by wire
FEM	finite element method (for calculation, usually of structures)
FLIR	forward-looking infrared
FOD	foreign object damage
FSW	forward-swept wings
FY	fiscal year
GA	general aviation
GA	genetic algorithm (optimization method)
G&A	general and administrative (overhead expenses)
Gap	vertical distance between two wings of a biplane
G&C	guidance and control
GLOW	gross liftoff weight (Wo for rockets)
GPS	global positioning system
HALE	high-altitude long endurance

xxvi Aircraft Design: A Conceptual Approach

Helo	helicopter
HGI	hot-gas ingestion
hp	horsepower (=550 ft-lb/s = 746 W)
HUD	head-up display
IAS	indicated airspeed
ICAO	International Civil Aviation Organization
IFR	instrument flight rules
IFR	in-flight refueling
ILS	instrument landing system
INS	inertial navigation system
IOC	indirect operating costs
IPPD	integrated product and process development
IPT	integrated product team
IR	infrared
ISO	International Standards Organization
JAR	joint aviation requirements (European cert. specs)
JATO	jet-assisted takeoff
JDAM	joint direct attack munition
JP	jet propellant (kerosene-based fuel)
JSF	Joint Strike Fighter (project leading to F-35)
KISS	keep it simple, stupid (attributed to Ed Heinemann)
LCC	life-cycle cost (total cost from product development to
	retirement)
LOX	liquid oxygen
L&P	leakage and protuberances (causing additional drag)
LTA	lighter than air (airship)
MECO	main engine cutoff (shutdown)
MDO	multidisciplinary design optimization
MMH/FH	maintenance man-hours per flight hour
MSL	mean sea level
MTOW	maximum takeoff weight
MZFW	maximum zero fuel weight
NASA	National Aeronautics and Space Administration
NASTRAN	NASA Structural Analysis (FEM software)
NAV	navigation
NC	numerically controlled
NOTAR	no tail rotor (helicopter)
NPV	net present value
NS	Navier–Stokes (high-end CFD)
NURBS	nonuniform rational B-Spline (curve equation for CAD)
O&S	operations and support
OEM	original equipment manufacturer
OEI	one engine inoperative
<i>p</i> -Effect	yawing moment due to propeller

PPPI	preplanned product improvement (P ³ I or P-cubed I)
pre-preg	pre-impregnated (composite materials)
QFD	quality function deployment
RCS	radar cross section
RCS	reaction control system (small thrusters for control)
RDS	Raymer's design system (aircraft design software)
RDT&E	research, development, test, and evaluation (costs)
RFI	request for information (usually unpaid)
RFP	request for proposals
RFQ	request for quotations
Recce	reconnaissance
Recon	reconnaissance
RPM	revolutions per minute
RP	rocket propellant (kerosene-based fuel)
RPV	remote-piloted vehicle
SAM	surface-to-air missile
SAR	synthetic aperture radar
S&C	stability and control
SHM	structural health monitoring
SL	sea level
SOP	standard operating procedure
SST	supersonic transport
Stagger	longitudinal offset of two wings of a biplane
STOL	short takeoff and landing
STOVL	short takeoff/vertical landing
T&E	test and evaluation
TAS	true airspeed
TRL	technology readiness level
TOGW	takeoff gross weight
TPS	thermal protection system (for reentry)
TQM	total quality management
TVC	thrust vector control
UAV	unmanned or uninhabited aerial (or air) vehicle
UCAV	unmanned or uninhabited combat air vehicle
VFR	visual flight rules
VIFF	vectoring in forward flight
V/STOL	vertical/short takeoff and landing
VTO	vertical takeoff
VTOL	vertical takeoff and landing
WBS	work breakdown structure
WIG	wing-in-ground effect
ZFW	zero fuel weight

xxviii Aircraft Design: A Conceptual Approach

Daniel P. Raymer at the North American Aviation Trisonic Wind Tunnel, holding a supersonic model of his Advanced Tactical Fighter design.

SUPPORTING MATERIALS

To download supplemental material files, please go to AIAA's electronic library, Aerospace Research Central (ARC), at arc.aiaa.org. Use the menu bar at the top to navigate to Books > AIAA Education Series; then, navigate to the desired book's landing page by clicking on its title. On the landing page, click the link beneath "Supplemental Materials," enter the password **ADACA6E**, and follow the directions provided.

A complete listing of titles in the AIAA Education Series is available from AIAA's electronic library, Aerospace Research Central (ARC), at arc.aiaa.org. Visit ARC frequently to stay abreast of product changes, corrections, special offers, and new publications.

AIAA is committed to devoting resources to the education of both practicing and future aerospace professionals. In 1996, the AIAA Foundation was founded. Its programs enhance scientific literacy and advance the arts and sciences of aerospace. For more information, please visit www.aiaafoundation.org.